Queues

Nodes on Argon are separated into 3 types of queues:

Investor Queues

To request access to an investor queue, please contact the queue manager listed below.

Queue,Node Description,Queue Manager,Slots,Total memory (GB)
AMCS,(1) 112-core 256G,Laurent Jay,112,256
AML-HM,"(2) 128-core 1024G
(2) 112-core 1.5T
(1) 80-core 1.5T",Aaron Miller,560,6548.0
ARROMA-80,(6) 80-core 192G,Jun Wang,480,1152
ARROMA-Analysis,(2) 80-core 768G,Jun Wang,160,1536
ARROMA-GPU,"(1) 112-core 1024G w/ (4) NVIDIA A30
(1) 128-core 1024G w/ (4) NVIDIA A40",Jun Wang,240,2048
ARROMA-NEO,(7) 128-core 256G,,896,1792
ARROMA-OPERATION,(1) 80-core 768G,Jun Wang,80,768
BIGREDQ,(3) 80-core 384G,"Sara Mason
JJ Urich",240,1152
BIGREDQ-HM,(1) 80-core 768G,Sara Mason,80,768
BIO-INSTR,(1) 128-core 512G,"Bin He
Bradley Carson
Jan Fassler
Dan Holstad
Bradley Carson
Matthew Brockman
Hugh Brown
JJ Urich
Aran Cox",128,512
BIOSTAT,"(1) 128-core 512G
(1) 80-core 384G","Daniel Sewell
Grant Brown
Patrick Breheny
Brian Smith
Yuan Huang",208,896
BRAINBO-GPU,"(1) 128-core 512G w/ (1) NVIDIA A100 80GB PCIe
(1) 112-core 512G w/ (1) NVIDIA A100 80GB PCIe","Rainbo Hultman
Benjamin Hing",240,1024
BV,,Bess Vlaisavljevich,0,0
BVHIGH,,Bess Vlaisavljevich,0,0
CASMA,(2) 112-core 512G,Jonathan Templin,224,1024
CBIG,(1) 64-core 192G w/ (1) NVIDIA TITAN V JHH Special Edition,"Mathews Jacob
Qing Zou
Qing Zou",64,192
CBIG-A100,(1) 112-core 1024G w/ (2) NVIDIA A100 80GB PCIe,"Xiaodong Wu
Mathews Jacob",112,1024
CGRER,(4) 80-core 192G,Jeremie Moen,320,768
CLAS-INSTR-GPU,"(1) 40-core 192G w/ (1) NVIDIA GeForce GTX 1080 Ti
(1) 40-core 192G w/ (2) NVIDIA GeForce GTX 1080 Ti
(One node with single, one node with two accelerators)","Bradley Carson
Dan Holstad
Bradley Carson
Matthew Brockman
Hugh Brown
JJ Urich",80,384
COB,(1) 128-core 1024G,Brian Heil,128,1024
COB-GPU,(1) 40-core 192G w/ (2) NVIDIA TITAN V,Brian Heil,40,192
CODBCB,(1) 64-core 384G w/ (1) NVIDIA TITAN V,"Xian Xie
Brad Amendt
Erliang Zeng",64,384
COE,"(8) 128-core 512G
Note: Users are restricted to no more than three running jobs in the COE queue.",Matt McLaughlin,1024,4096
COE-GPU,"(2) 40-core 192G w/ (4) NVIDIA GeForce GTX 1080 Ti
(2) 40-core 192G w/ (4) NVIDIA TITAN V",Matt McLaughlin,160,768
EES,(10) 80-core 192G w/ (1) Tesla V100S-PCIE-32GB,"William Barnhart
JJ Urich",800,1920
EHRM,(1) 80-core 192G w/ (2) NVIDIA GeForce RTX 2080 Ti,,80,192
FERBIN,"(14) 80-core 96G w/ (4) NVIDIA GeForce RTX 2080 Ti
(4) 112-core 256G w/ (4) NVIDIA A10","Adrian Elcock
Robert McDonnell",1568,2368
FOLLAND-LAB,(1) 80-core 384G w/ (1) Tesla V100S-PCIE-32GB,Thomas Folland,80,384
GEOPHYSICS,(2) 80-core 192G,"William Barnhart
JJ Urich",160,384
GV,"(7) 128-core 1024G
(2) 112-core 512G","Mark Wilson
Brian Miller
Gabriele Villarini",1120,8192
HARRY,(2) 128-core 1024G,"Claudio Margulis
Dishan Das",256,2048
HCCC,(3) 112-core 1024G,"Garay, Raygoza",336,3072
IDOT-FloodPeaks,(4) 80-core 384G,Gabriele Villarini,320,1536
IFC,(10) 112-core 512G,"Mark Wilson
Brian Miller",1120,5120
IIHG,(4) 128-core 512G,Michael Chimenti,512,2048
INFORMATICS-GPU,(2) 40-core 192G w/ (3) NVIDIA TITAN V,Research Services,80,384
IRRC,(1) 64-core 768G,Benjamin Walizer,64,768
IVR,(2) 128-core 512G,Todd Scheetz,256,1024
JG,"(8) 80-core 768G
(2) 80-core 192G w/ (6) NVIDIA GeForce RTX 2080 Ti
(1) 80-core 768G w/ (4) NVIDIA GeForce RTX 2080 Ti
(1) 80-core 192G
(1) 80-core 192G w/ (8) NVIDIA GeForce RTX 2080 Ti",Joe Gomes,1040,7680
JM,(1) 80-core 384G,"Jacob Michaelson
Tanner Koomar
Ethan Bahl
Leo Brueggeman
Taylor Thomas",80,384
JM-GPU,"(1) 80-core 768G w/ (1) Tesla V100-PCIE-32GB
(1) 80-core 1.5T w/ (6) NVIDIA GeForce RTX 2080 Ti
(1) 128-core 1.5T w/ (1) NVIDIA L40S",Jake Michaelson,288,3768.0
LT,(2) 128-core 512G,Luke Tierney,256,1024
LUNG,"(2) 64-core 768G w/ (2) Tesla V100-PCIE-32GB
(2) 112-core 1024G w/ (4) NVIDIA A100 80GB PCIe
(1) 80-core 768G w/ (4) Quadro RTX 8000(nvlink)
(1) 128-core 1024G","Joseph Reinhardt
Bidgoli, Motahari
Sarah Gerard",560,5376
MANSCI,"(1) 128-core 1024G
(1) 112-core 512G",Qihang Lin,240,1536
MANSCI-GPU,"(2) 64-core 384G w/ (4) NVIDIA GeForce RTX 2080 Ti
(1) 80-core 384G w/ (4) NVIDIA GeForce RTX 2080 Ti
(1) 128-core 1024G w/ (4) NVIDIA A40",Qihang Lin,336,2176
MF,(4) 128-core 1024G,Michael Flatte,512,4096
MIL,(1) 112-core 1024G,"Merry Mani
Melissa Lawrence
Melissa Lawrence",112,1024
MILES,(2) 128-core 256G,,256,512
MIRO,,"Ramirez, Miro",0,0
MIROHI,,"Ramirez, Miro",0,0
MORL,"(2) 128-core 1024G
(1) 128-core 512G w/ (1) NVIDIA L40S",William Walls,384,2560
MS,"(6) 40-core 96G w/ (4) NVIDIA GeForce GTX 1080 Ti
(2) 128-core 256G
(2) 80-core 96G w/ (8) NVIDIA GeForce RTX 2080 Ti
(1) 80-core 384G w/ (4) NVIDIA GeForce RTX 2080 Ti
(1) 112-core 128G w/ (6) NVIDIA A10
(1) 40-core 96G w/ (4) NVIDIA TITAN V",Michael Schnieders,888,1888
NBW,(1) 128-core 512G,"Nathan Wikle
Nathan Wikle",128,512
PINC,(6) 128-core 512G,Jason Evans,768,3072
PINC-HM,(3) 80-core 768G,Jason Evans,240,2304
QUANTUM,(1) 112-core 1024G w/ (2) NVIDIA A40(nvlink),"Gary Christensen
Fatima Toor",112,1024
RSKZ,(1) 112-core 1024G,"Jim Chaffee
Kang Zhao
Rong Su",112,1024
SEASHORE,"(2) 80-core 768G
(1) 128-core 1024G
(1) 112-core 512G
(1) 128-core 1024G w/ (1) NVIDIA L40S","Kai Hwang
Jiefeng Jiang
Dorit Kliemann",528,4096
SEG,(1) 128-core 1024G,Sarah Gerard,128,1024
SGL,(1) 128-core 1024G w/ (4) NVIDIA RTX A6000,Sajan Lingala,128,1024
SHL,"(3) 128-core 1024G
(2) 80-core 768G
(1) 80-core 384G w/ (1) Tesla V100-PCIE-32GB","Valerie Reeb
Alankar Kampoowale
Wesley Hottel",624,4992
SYMPT,(1) 128-core 512G w/ (4) NVIDIA L40S,,128,512
TELOMERE2,(1) 128-core 512G,Josep Comeron,128,512
TEMPLIN,(1) 80-core 768G,Jonathan Templin,80,768
UDAY,(7) 128-core 512G,"Mark Wilson
Brian Miller
H Udaykumar",896,3584
UIOBL,"(2) 80-core 384G w/ (2) Tesla V100-PCIE-32GB
(2) 112-core 512G w/ (2) NVIDIA A40(nvlink)
(2) 112-core 512G w/ (2) NVIDIA A40","Joshua Johnson
Don Anderson
Jessica Goetz
Jacob Elkins",608,2816
VOSSHBC,(1) 112-core 512G,Michelle Voss,112,512
WEIRANWANG-GROUP,,Weiran Wang,0,0

The University of Iowa (UI) queues

A significant portion of the HPC cluster systems at UI were funded centrally. These nodes are put into queues named UI or prefixed with UI-.

These queues are available to everyone who has an account on an HPC system. Since that is a fairly large user base there are limits placed on these shared queues. Also note that there is a limit of 50000 active (running and pending) jobs per user on the system.

Queue,Node Description,Wall clock limit,Running jobs per user
UI,"(28) 80-core 384G
(24) 128-core 512G
(1) 112-core 512G
(1) 112-core 1024G",None,5
UI-DEVELOP,"(1) 128-core 256G
(1) 128-core 256G w/ (1) NVIDIA A40",24 hours,1
UI-GPU,"(8) 80-core 384G w/ (4) NVIDIA GeForce RTX 2080 Ti
(4) 128-core 512G w/ (4) NVIDIA A40
(4) 128-core 512G w/ (1) NVIDIA A100 80GB PCIe
(3) 40-core 192G w/ (4) NVIDIA TITAN V
(2) 112-core 256G w/ (8) NVIDIA A10
(2) 112-core 256G w/ (4) NVIDIA A40(nvlink)
(2) 128-core 512G
(1) 128-core 512G w/ (4) NVIDIA L40S
(1) 80-core 384G w/ (1) Tesla V100-PCIE-32GB
(1) 40-core 192G w/ (4) NVIDIA GeForce GTX 1080 Ti
(1) 64-core 384G w/ (4) NVIDIA GeForce GTX 1080 Ti
(1) 64-core 384G w/ (3) NVIDIA GeForce GTX 1080 Ti
(1) 64-core 192G w/ (1) NVIDIA GeForce GTX 1080 Ti
(1) 64-core 192G w/ (2) NVIDIA TITAN V
(1) 64-core 768G w/ (2) NVIDIA GeForce GTX 1080 Ti
(1) 128-core 512G w/ (4) NVIDIA L4",None,1
UI-GPU-HM,"(1) 128-core 1024G w/ (1) NVIDIA A100 80GB PCIe
(1) 128-core 1024G
(1) 80-core 1.5T w/ (8) NVIDIA GeForce RTX 2080 Ti
(1) 128-core 1024G w/ (4) NVIDIA A40",24 hours,1
UI-HM,"(6) 128-core 1024G
(2) 64-core 768G
(1) 80-core 1.4T
(1) 80-core 1.5T",None,1
UI-MPI,(24) 128-core 512G,48 hours,1

Note that the number of slots available in the UI queue can vary depending on whether anyone has purchased a reservation of nodes. The UI queue is the default queue and will be used if no queue is specified. This queue is available to everyone who has an account on a UI HPC cluster system. 

Please use the UI-DEVELOP queue for testing new jobs at a smaller scale before committing many nodes to your job.

The all.q queue

This queue encompasses all of the nodes and contains all of the available job slots. It is available to everyone with an account and there are no running job limits. However, it is a low priority queue instance on the same nodes as the higher priority investor and UI queue instances. The all.q queue is subordinate to these other queues and jobs running in it will give up the nodes they are running on when jobs in the high priority queues need them. The term we use for this is "job eviction". Jobs running in the all.q queue are the only ones subject to this.

Queue,Node Description,Slots,Total Memory (GB)
all.q,"(84) 128-core 512G
(40) 80-core 384G
(31) 128-core 1024G
(20) 112-core 512G
(20) 80-core 768G
(14) 80-core 96G w/ (4) NVIDIA GeForce RTX 2080 Ti
(14) 128-core 256G
(13) 80-core 192G
(10) 80-core 384G w/ (4) NVIDIA GeForce RTX 2080 Ti
(10) 80-core 192G w/ (1) Tesla V100S-PCIE-32GB
(6) 112-core 1024G
(6) 128-core 512G w/ (1) NVIDIA A100 80GB PCIe
(6) 40-core 96G w/ (4) NVIDIA GeForce GTX 1080 Ti
(5) 40-core 192G w/ (4) NVIDIA TITAN V
(4) 128-core 512G w/ (4) NVIDIA A40
(4) 128-core 512G w/ (4) NVIDIA L40S
(4) 112-core 256G w/ (4) NVIDIA A10
(4) 80-core 1.5T
(4) 1-core 1.5T
(3) 128-core 1024G w/ (4) NVIDIA A40
(3) 64-core 768G
(3) 40-core 192G w/ (4) NVIDIA GeForce GTX 1080 Ti
(2) 64-core 768G w/ (2) Tesla V100-PCIE-32GB
(2) 64-core 384G w/ (4) NVIDIA GeForce RTX 2080 Ti
(2) 40-core 192G w/ (3) NVIDIA TITAN V
(2) 80-core 192G w/ (6) NVIDIA GeForce RTX 2080 Ti
(2) 80-core 768G w/ (4) NVIDIA GeForce RTX 2080 Ti
(2) 80-core 192G w/ (2) NVIDIA GeForce RTX 2080 Ti
(2) 112-core 1.5T
(2) 112-core 512G w/ (2) NVIDIA A40
(2) 112-core 512G w/ (2) NVIDIA A40(nvlink)
(2) 112-core 1024G w/ (4) NVIDIA A100 80GB PCIe
(2) 112-core 256G w/ (8) NVIDIA A10
(2) 80-core 96G w/ (8) NVIDIA GeForce RTX 2080 Ti
(2) 112-core 256G w/ (4) NVIDIA A40
(2) 80-core 384G w/ (1) Tesla V100-PCIE-32GB
(2) 128-core 1024G w/ (1) NVIDIA A100 80GB PCIe
(2) 80-core 384G w/ (2) Tesla V100-PCIE-32GB
(1) 80-core 192G w/ (8) NVIDIA GeForce RTX 2080 Ti
(1) 80-core 768G w/ (4) Quadro RTX 8000(nvlink)
(1) 112-core 1024G w/ (2) NVIDIA A100 80GB PCIe
(1) 112-core 128G w/ (6) NVIDIA A10
(1) 40-core 192G w/ (1) NVIDIA GeForce GTX 1080 Ti
(1) 40-core 192G w/ (2) NVIDIA GeForce GTX 1080 Ti
(1) 40-core 192G w/ (2) NVIDIA TITAN V
(1) 80-core 768G w/ (1) Tesla V100-PCIE-32GB
(1) 80-core 1.5T w/ (8) NVIDIA GeForce RTX 2080 Ti
(1) 80-core 1.5T w/ (6) NVIDIA GeForce RTX 2080 Ti
(1) 40-core 96G w/ (4) NVIDIA TITAN V
(1) 64-core 384G w/ (4) NVIDIA GeForce GTX 1080 Ti
(1) 64-core 384G w/ (3) NVIDIA GeForce GTX 1080 Ti
(1) 64-core 384G w/ (1) NVIDIA TITAN V
(1) 64-core 192G w/ (1) NVIDIA TITAN V JHH Special Edition
(1) 64-core 192G w/ (1) NVIDIA GeForce GTX 1080 Ti
(1) 64-core 192G w/ (2) NVIDIA TITAN V
(1) 64-core 768G w/ (2) NVIDIA GeForce GTX 1080 Ti
(1) 80-core 384G w/ (1) Tesla V100S-PCIE-32GB
(1) 112-core 1024G w/ (2) NVIDIA A40(nvlink)
(1) 112-core 256G
(1) 112-core 1024G w/ (4) NVIDIA A30
(1) 128-core 1024G w/ (4) NVIDIA RTX A6000
(1) 128-core 1024G w/ (1) NVIDIA L40S
(1) 128-core 512G w/ (4) NVIDIA L4
(1) 128-core 1.5T w/ (1) NVIDIA L40S
(1) 128-core 512G w/ (1) NVIDIA L40S
(1) 112-core 512G w/ (1) NVIDIA A100 80GB PCIe",36980,196428.0

In addition to the above, there are some nodes that are not part of any investor queue. These are only available in the all.q queue and are used for node rentals and future purchases. The number of nodes for this purpose varies.

Guidelines for selecting a queue

It may not always be obvious, particularly if you are a member of an investor group, which is the best queue to submit a job to. As a guideline, if you are in an investor group and there are enough free slots in your queue for your job(s) then you should use the investor queue. If you are not in an investor group, or there are not enough free slots in your investor queue, you should submit parallel jobs to the UI queue. If not submitting to an investor queue, and if your jobs are serial jobs, they should generally be submitted to the all.q queue. Unless you have a small number of jobs, and/or can not risk them getting evicted, then use the UI queue.

To see which investor group you are associated with (if any) use the following command:

whichq

It is anticipated that members of an investment group will have their own system for deciding who runs what on their dedicated resources.

As an example, if you are a member of the CGRER investment group and want to determine how many slots are currently available, the following command can be used:

qstat -g c -q CGRER

This will generate output like the following, which indicates that 464 slots are available out of the 560 tot slots allocated to the CGRER queue:

CLUSTER QUEUE                   CQLOAD   USED    RES  AVAIL  TOTAL aoACDS  cdsuE
--------------------------------------------------------------------------------
CGRER                             0.77     96      0    464    560      0      0

Queue decision.png

While not indicated in the above, a parallel job can be submitted to the all.q queue. Since a parallel job likely runs on more than one node, the likelihood of a job getting evicted is increased. Thus, it is recommended that parallel jobs be submitted to the UI queue in preference to the all.q queue. 

GPU selection policy

For queues that consist of all nodes containing a GPU, and are split out into a QUEUE-GPU queue, the policy is to set the ngpus resource to 1 if not explicitly set. For other queues that contain GPU nodes the policy has been set by the queue owner to either request a GPU by default or not.